Ges, a Human Gtpase of the Rad/Gem/Kir Family, Promotes Endothelial Cell Sprouting and Cytoskeleton Reorganization

نویسندگان

  • Julie Y. Pan
  • William E. Fieles
  • Anne M. White
  • Mark M. Egerton
  • David S. Silberstein
چکیده

Rad, Gem/Kir, and mRem (RGK) represent a unique GTPase family with largely unknown functions (Reynet, C., and C.R. Kahn. 1993. Science. 262:1441-1444; Cohen, L., R. Mohr, Y. Chen, M. Huang, R. Kato, D. Dorin, F. Tamanoi, A. Goga, D. Afar, N. Rosenberg, and O. Witte. Proc. Natl. Acad. Sci. USA. 1994. 91:12448-12452; Maguire, J., T. Santoro, P. Jensen, U. Siebenlist, J. Yewdell, and K. Kelly. 1994. Science. 265:241-244; Finlin, B.S., and D.A. Andres. 1997. J. Biol. Chem. 272:21982-21988). We report that Ges (GTPase regulating endothelial cell sprouting), a human RGK protein expressed in the endothelium, functions as a potent morphogenic switch in endothelial cells (ECs). Ges function is sufficient to substitute for angiogenic growth factor/extracellular matrix (ECM) signals in promoting EC sprouting, since overexpression of Ges in ECs cultured on glass leads to the development of long cytoplasmic extensions and reorganization of the actin cytoskeleton. Ges function is also necessary for Matrigel-induced EC sprouting, since this event is blocked by its dominant negative mutant, Ges(T94N), predicted to prevent the activation of endogenous Ges through sequestration of its guanine nucleotide exchange factor. Thus, Ges appears to be a key transducer linking extracellular signals to cytoskeleton/morphology changes in ECs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

14-3-3 and calmodulin control subcellular distribution of Kir/Gem and its regulation of cell shape and calcium channel activity.

Individual members of the RGK family of Ras-related GTPases, which comprise Rad, Gem/Kir, Rem and Rem2, have been implicated in important functions such as the regulation of voltage-gated calcium channel activity and remodeling of cell shape. The GTPase Kir/Gem inhibits the activity of calcium channels by interacting with the beta-subunit and also regulates cytoskeleton dynamics by inhibiting t...

متن کامل

Rem is a new member of the Rad- and Gem/Kir Ras-related GTP-binding protein family repressed by lipopolysaccharide stimulation.

We report the cDNA cloning and characterization of a novel GTP-binding protein, termed Rem (for Rad and Gem-related), that was identified as a product of polymerase chain reaction amplification using oligonucleotide primers derived from conserved regions of the Rad, Gem, and Kir Ras subfamily. Alignment of the full-length open reading frame of mouse Rem revealed the encoded protein to be 47% id...

متن کامل

Phosphorylation of critical serine residues in Gem separates cytoskeletal reorganization from down-regulation of calcium channel activity.

Gem is a small GTP-binding protein that has a ras-like core and extended chains at each terminus. The primary structure of Gem and other RGK family members (Rad, Rem, and Rem2) predicts a GTPase deficiency, leading to the question of how Gem functional activity is regulated. Two functions for Gem have been demonstrated, including inhibition of voltage-gated calcium channel activity and inhibiti...

متن کامل

Rem2, a new member of the Rem/Rad/Gem/Kir family of Ras-related GTPases.

Here we report the molecular cloning and biochemical characterization of Rem2 (for Rem, Rad and Gem-related 2), a novel GTP-binding protein identified on the basis of its homology with the Rem, Rad, Gem and Kir (RGK) family of Ras-related small GTP-binding proteins. Rem2 mRNA was detected in rat brain and kidney, making it the first member of the RGK family to be expressed at relatively high le...

متن کامل

The GTP binding proteins Gem and Rad are negative regulators of the Rho–Rho kinase pathway

The cytoskeletal changes that alter cellular morphogenesis and motility depend upon a complex interplay among molecules that regulate actin, myosin, and other cytoskeletal components. The Rho family of GTP binding proteins are important upstream mediators of cytoskeletal organization. Gem and Rad are members of another family of small GTP binding proteins (the Rad, Gem, and Kir family) for whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 149  شماره 

صفحات  -

تاریخ انتشار 2000